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Abstract. We construct a connected network of 3.9 million nodes from mobile
phone call records, which can be regarded as a proxy for the underlying human
communication network at the societal level. We assign two weights on each
edge to reflect the strength of social interaction, which are the aggregate call
duration and the cumulative number of calls placed between the individuals
over a period of 18 weeks. We present a detailed analysis of this weighted
network by examining its degree, strength, and weight distributions, as well as
its topological assortativity and weighted assortativity, clustering and weighted
clustering, together with correlations between these quantities.We give an account
of motif intensity and coherence distributions and compare them to a randomized
reference system. We also use the concept of link overlap to measure the number
of common neighbours any two adjacent nodes have, which serves as a useful
local measure for identifying the interconnectedness of communities. We report
a positive correlation between the overlap and weight of a link, thus providing
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strong quantitative evidence for the weak ties hypothesis, a central concept in
social network analysis. The percolation properties of the network are found to
depend on the type and order of removed links, and they can help understand how
the local structure of the network manifests itself at the global level. We hope that
our results will contribute to modelling weighted large-scale social networks, and
believe that the systematic approach followed here can be adopted to study other
weighted networks.
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1. Introduction and data

Social networks have been a subject of intensive study since the 1930s. In this framework social
life consists of the flow and exchange of norms, values, ideas and other social and cultural
resources [1], and social action of individuals is affected by the structure of the underlying
network [2]. The structure of social networks is important then not only from the perspective of the
individual, but also from that of the society as a whole. However, uncovering the structure of social
networks has been constrained by the practical difficulty of mapping out interactions among a
large number of individuals. Social scientists have ordinarily based their studies on questionnaire
data, typically reaching the order of N ≈ 102 individuals [3]. Although the spectrum of social
interactions that may be probed in this approach is wide, the strength of an interaction is often
based on recollection and, consequently, is highly subjective. However, in the late the 1990s a
change of paradigm took place [4, 5]. Physicists became interested in large-scale social networks,
utilizing electronic databases from emails [6]–[8] to phone records [9], offering unprecedented
opportunities to uncover and explore large-scale social networks [10]. In this scheme the order of
N ≈ 106 individuals may be handled and, although the range of social interactions is narrower,
in some cases their strengths may be objectively quantifiable. While both approaches have their
merits, studying large-scale networks has potential to shed light on how individual microscopic
interactions translate into macroscopic social systems. In addition to this being one of the key
questions as posed by social scientists in the field, it is also the one to which statistical physics
in general, and the science of complex networks in particular, can make a contribution.

In this paper, we present a detailed analysis of a network constructed from a data set
consisting of the mobile phone call records of over seven million individuals over a period of
18 weeks (126 days), covering approximately 20% of the population of the country. For the
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purpose of retaining customer anonymity, each subscription was identified by a surrogate key,
guaranteeing that the privacy of customers was respected. We kept only voice calls, filtering
out all other services, such as voice mail, data calls, text messages, chat and operator calls. We
filtered out calls involving other operators, incoming or outgoing, keeping only those transactions
in which the calling and receiving subscription is governed by the same operator. This filtering
was needed to eliminate the bias between this operator and other operators as we have a full
access to the call records of this operator, but only partial access to the calls made to subscriptions
governed by other operators. We constructed two different networks from the data. In the first
scheme we connected two users with an undirected link if there had been at least one phone
call between them, i.e. i called j or j called i, resulting in a non-mutual network consisting
of N = 7.2 × 106 nodes and L = 22.6 × 106 links. However, many of these calls are one-way,
most of which correspond to single events, suggesting that they typically reach individuals that
the caller might not know personally. To eliminate them, in the second scheme we connected
two users with an undirected link if there had been at least one reciprocated pair of phone calls
between them, i.e. i called j and j called i, resulting in a mutual network with N = 4.6 × 106

nodes and L = 7.0 × 106 links.
The resulting mobile call graph (MCG) naturally captures only a sub-set of the underlying

social network, which consists of all forms of social interactions, including face-to-face
interactions, email and landline communication etc. However, research on media multiplexity
suggests that the use of one medium for communication between two people implies
communication via other means as well [11]. Furthermore, in the absence of directory listings,
the mobile phone data is skewed towards trusted interactions, i.e. people tend to share their
mobile numbers only with individuals they trust. Therefore, the MCG can be used as a proxy for
the underlying social network.

We can quantify the weight of the link (i, j) by the aggregated time i and j spent talking
to each other as well as by the total number of calls made between i and j over the studied
period. These weights are denoted by wD

ij (total duration of calls) and wN
ij (total number of

calls), respectively, where the former is measured in seconds (s) and the latter is a dimensionless
quantity.

This paper is devoted to the study of these weighted, large-scale, one-to-one social
interaction networks, with emphasis on the mutual over the non-mutual network. We adopt
a ‘cookbook approach’ by carrying out a systematic analysis of basic and more advanced
network characteristics, and hope that others working on weighted networks will benefit from
our ‘recipes’. We study some of the basic network characteristics in section 2 and focus on
weighted network characteristics in section 3. We explore the coupling between link weight and
the surrounding local network topology in section 4. We have dedicated section 5 to the study of
percolation properties of the network and, finally, discuss our findings in section 6.

2. Basic network characteristics

We start inspecting the network by showing a small sample of it in figure 1. The sample has been
extracted from the mutual network by picking a node (source node) at random and including all
nodes in the sample that are within a (topological) distance of � = 5 from the source node. This
method of sampling is sometimes called snowball sampling [12]. The colour of links corresponds
to the strength of each tie in terms of wD

ij . It appears from this figure that the network consists
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Figure 1. A small sample of the network with link weights wD
ij colour coded

from yellow (weak link) to red (strong link).

of small local clusters, and the majority of the strong ties (coloured in red) seem to be localized
within these clusters. In some cases nodes connected by a strong link have many common
neighbours, but there are also strongly connected nodes with few or no common neighbours.

These two apparently contradictory trends arise as a result of being forced to examine a
sample of the network as opposed to the entire network. To understand the limits of visual
inspection, it is important to realize that since the network is a high dimensional object, a
majority of the nodes will be on the outskirts of the sample. A consequence of this is that for
most of these nodes we only have partial visibility into their neighbourhood. Consequently, one
can see the full neighbourhood for only a small minority of nodes in the sample.

Let us elaborate on network sampling. We show in figure 2 the number of nodes in the
sample Ns(�), obtained using snowball sampling, as a function of extraction distance � for
several choices of the source node (solid lines) and their average (dashed line). Here Ns(�) is
defined as the number of nodes within a distance � from the given source node. For a fixed
value of x, we call nodes for which � < x bulk nodes and those with � = x surface nodes of the
sample. The number of surface nodes clearly outweighs the number of bulk nodes. This is to be
expected since the network behaves like a high dimensional hypersphere, the volume of which
is negligible to its surface area. To a good approximation we can write Ns = AeB�, where A and
B are fitting parameters. In general, the number of surface nodes to the number of bulk nodes
in the sample is [Ns(�) − Ns(� − 1)]/Ns(�) = 1 − e−B. Thus, assuming that B is of the order of
one or smaller, a large majority of nodes in the sample are surface nodes.

This is clear from another network sample in figure 3, in which bulk nodes and surface
nodes are drawn with different markers. It is only for bulk nodes that we have a full visibility

New Journal of Physics 9 (2007) 179 (http://www.njp.org/)

http://www.njp.org/


5 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 2. Number of nodes in the sample Ns(�) , obtained by snowball sampling,
as a function of extraction distance � for several choices of the source node (solid
lines) and their average (dashed line).

Figure 3. A sample of the network, showing the source (orange square at the
centre) node from which sampling was started, the bulk nodes (+), and surface
nodes (◦). For surface nodes, which clearly are in the majority, only some of their
nearest neighbours are visible in the sample, while the rest are outside the sample.
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Figure 4. Cumulative degree distribution Pnet
> (k) for the mutual (•) and non-

mutual (◦) networks (left) and for their respective largest connected components
(LCC) PLCC

> (k) (right). The mutual network is a subgraph of the non-mutual
one, and 84.1% of the nodes in the mutual network belong to a single connected
component (LCC), for which the average degree 〈k〉 ≈ 3.0.

to their neighbourhood and, consequently, may make unbiased judgments about the structure of
their neighbourhood. Since these nodes are clearly in the minority, visual inspection of network
samples has limited utility.

A basic network characteristic, the degree distribution, is shown in figure 4. To avoid the need
for binning, we study the cumulative degree distribution P>(k), defined as P>(k) = ∫ ∞

k
p(x) dx,

where p(x) the degree probability density function. We denote the distribution for whole mutual
and non-mutual networks Pnet

> (k), and that of their respective largest connected components
(LCC) by PLCC

> (k). Note that the mutual network is a subgraph of the non-mutual one, and the
LCC is a subgraph of the whole network. In the case of the mutual network 84% of the nodes
belong to the LCC. In this case little is left outside the LCC, partly explaining why distributions
are almost identical for the whole network and the LCC.

In general, the degree distributions are skewed with a fat tail, indicating that while most users
communicate with only a few individuals, a small minority talks with dozens. The noticeable
difference between the degree distributions for the mutual and non-mutual network is the fatter tail
of the non-mutual network. In particular, while the most connected node in the LCC of the mutual
network has kmax = 144, in the LCC of the non-mutual network we find that kmax = 34 625.
Clearly, the latter cannot correspond to a single individual. However, it appears plausible that
the mutual network is dominated by trusted interactions, i.e. people tend to share their mobile
numbers only with individuals they trust. We also point out that kmax = 144 in the mutual
network is very close to the approximate number of 150 put forward by Dunbar as a limit
on connectivity resulting from the size of neocortex in the cerebral cortex in primates [13].
From now on, unless otherwise mentioned, we shall focus exclusively on the LCC of the mutual
network.

The tail of the degree distribution P(k) for the LCC of the mutual network is approximated
well by a power law of the form P(k) = a(k + k0)

−γ with k0 = 10.9 and γ = 8.4. Note that the
value of the exponent is significantly higher than the value observed for landlines (γ = 2.1 for
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Figure 5. Cumulative link weight distributions (left) and cumulative node
strength distributions (right) in the LCC of the mutual network. Link weights
and node strengths are measured in terms of the absolute number of calls
made during the studied period (◦), corresponding to P>(wN) and P>(sN), as
well as the aggregated call duration during the period (•), given by P>(wD)

and P>(sD).

the in-degree distribution [14]). For such a rapidly decaying degree distribution the hubs are few,
and therefore many properties of traditional scale-free networks, from anomalous diffusion [15]
to error tolerance [16], are absent.

As mentioned in the introduction, the strengths of social interactions are measured both
in terms of the aggregate number of calls made, denoted with wN

ij , and the aggregate duration
of calls, denoted with wD

ij . The same applies to node strengths, defined as sN
i = ∑

j∈N (vi)
wN

ij

and sD
i = ∑

j∈N (vi)
wD

ij , which correspond to number-of-calls and aggregate-call-duration based
strengths, respectively, and where N (vi) denotes the neighbourhood of node i. The associated
cumulative link weight distributions are P>(wN) and P>(wD) and the cumulative node strength
distributions are P>(sN) and P>(sD) as shown in figure 5. Both link weight distributions are
broad so that while the majority of ties correspond to a couple of calls and a few minutes of air
time, a small fraction of users place numerous calls and spend hours chatting with each other.
On average an individual made 〈sN〉 ≈ 51.1 calls and spent 〈sD〉 ≈ 8074 s (135 min) on the
phone. Two connected individuals spoke on average 〈wN〉 ≈ 15.4 times on the phone spending
altogether 〈wD〉 ≈ 2429 s (40 min) talking to one other. These values are summarized in table 1,
which also lists some higher moments for the distributions.

The two weights wD
ij and wN

ij are strongly correlated as expected, and this is evident in
figure 6. In the mutual network Pearson’s linear correlation coefficient r between wN

ij and wD
ij

is r(wN
ij , w

D
ij ) = 0.70, implying that variance in wN

ij explains some 50% of variance in wD
ij . The

relationship between the two link weights can be further characterized by Spearman’s rank
correlation coefficient ρ, which assesses how well an arbitrary monotonic function describes the
relationship between any two variables without assuming a linear relationship between them. In
this case we find that ρ(wN

ij , w
D
ij ) = 0.96. Based on the correlation between link weights, one

would expect a correlation between node strengths, and we find here that r(sN
i , sD

i ) = 0.68 and
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Table 1. Summary of descriptive network statistics. The following terms are
used: whole network (net), LCC, non-mutual network (NM) and mutual network
(M). The superscripts N and and D refer to number-of-calls and aggregate-call-
duration based link weights and node strengths, respectively.

x Mean Std Skewness Kurtosis Max

Degree ki, net, NM 6.28 16.6 1.39 × 103 2.71 × 106 3.46 × 104

Degree ki, net, M 3.01 2.41 2.40 17.5 144
Degree ki, LCC, NM 6.37 16.8 1.38 × 103 2.68 × 106 3.46 × 104

Degree ki, LCC, M 3.32 2.49 2.28 17.0 144

Weight wN
ij 15.4 37.3 8.54 165 3.61 × 103

Weight wD
ij 2.43 × 103 1.23 × 104 25.1 1.52 × 103 2.39 × 106

Strength sN
i 51.1 74.8 4.30 44.2 3.64 × 103

Strength sD
i 8.07 × 103 2.32 × 104 13.5 452 2.48 × 106

100 102 104 106
100

101

102

103

wD
ij

w
N ij

Figure 6. Scatter plot of call duration weights wD
ij and number of calls weights

wN
ij . The two weights are clearly correlated in this random sample of 5000 links,

as well as in the LCC of the mutual network, giving rise to Pearson’s linear
correlation coefficient of 0.70 in the latter.

ρ(sN
i , sD

i ) = 0.97. In both cases Spearman’s correlation is higher than Pearson’s, suggesting that
while the associations between wN

ij and wD
ij as well as between sN

i and sD
i have linear components

to them, the correlations appear to be non-linear in nature6.

6 Note that in computing Spearman’s rank correlation coefficient we discarded degenerate data points. The
degeneracy arises because the data are discrete and its effects are compounded by the fact that the underlying
probability distributions are highly skewed. With very large datasets and highly skewed probability distributions
this can lead to ρ → 0, giving an erroneous characterization of the data.
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Figure 7. Average neighbour degree 〈knn|k〉, 〈kN
nn|k〉, and 〈kD

nn|k〉 (left) and average
neighbour strength 〈sD

nn|sD〉 and 〈sN
nn|sN〉 (right) in the LCC of the mutual network.

The three markers in the plot on the left correspond to unweighted 〈knn〉 (black
squares), number-of-calls weighted 〈kN

nn〉 (◦), and call-duration weighted 〈kD
nn〉 (•)

averages. The markers on the right correspond to number of calls (◦) and total
call duration (•).

The tail of the weight distribution P(wD) for the LCC of the mutual network is approximated
well by an exponentially truncated power-law of the form P(w) = a(w + w0)

−γ exp (−w/wc)

with w0 = 280, β = 1.9, and the cutoff parameter wc = 3.4 × 105. The broad tailed nature of
these distributions is rather unexpected, given that fat tailed tie strength distributions have been
observed mainly in networks characterized by global transport processes, such as the number
of passengers carried by the airline transportation network [17], the reaction fluxes in metabolic
networks [18], and packet transfer on the Internet [19]. In all these cases the individual fluxes
are determined by the global network topology, in which an important property is ‘conservation
of mass’, i.e. local conservation of passengers, molecules, and data packets. Such constraints
are not present here and, in addition, social networks are expected to be fairly local in nature,
meaning that the nature of the link weight and strength distributions are nontrivial. This raises
the interesting question of the extent to which network structure and link weights are correlated
in this network and, in general, whether their extent of correlation can be used to categorize
networks in different classes. We will address the first part of this question in section 4.

Social networks are expected to be assortative: people with many friends are connected to
others who also have many friends. This gives rise to degree–degree correlations in the network,
meaning that the degrees of two adjacent nodes are not independent. These correlations are
completely described by the joint probability distribution P(k, k′), giving the probability that a
node of degree k is connected to a node of degree k′. It is more practical, however, to define the
average nearest neighbours degree of a node vi as knn,i = (1/ki)

∑
j∈N (vi)

kj, where N (vi) denotes
the neighbourhood of vi. By averaging this over all nodes in the network of a given degree k, one
can calculate the average degree of nearest neighbours with degree k denoted by 〈knn|k〉, which
corresponds to

∑
k′ k

′P(k′|k) [20]. The network is said to exhibit assortative mixing if 〈knn|k〉
increases and disassortative mixing if it decreases as a function of k [21].

We show the average nearest neighbour degree in figure 7. We follow Barrat et al [22] and use
the weighted average nearest neighbour degree to characterize degree–degree correlations, which
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are written as kN
nn,i = (1/sN

i )
∑

j∈N (vi)
wN

ij kj and kD
nn,i = (1/sD

i )
∑

j∈N (vi)
wD

ij kj, corresponding to
the two weighting schemes. Averaging these over the network gives 〈knn|k〉, 〈kN

nn|k〉 and 〈kD
nn|k〉,

which measure the effective affinity to connect with neighbours of a given degree while taking
the magnitude of the interactions into account [22]. The three measures behave very similarly
in figure 7, and the network is clearly assortative degree-wise such that 〈knn|k〉 ∼ kα applies
with α ≈ 0.4.

In addition to degree–degree correlations, which characterize the topology of the network,
we can study correlations between node strengths. The average nearest neighbour strengths are
given by sN

nn,i = (1/ki)
∑

j∈N (vi)
sN
j and sD

nn,i = (1/ki)
∑

j∈N (vi)
sD
j which, when averaged over

all nodes in the network with strength approximately equal to s, gives the average strength of
nearest neighbours 〈sN

nn|sN〉 and 〈sD
nn|sD〉. Whereas the degrees of two adjacent nodes are strongly

correlated, we find that the strengths of two adjacent nodes in most cases are not. Figure 7
shows that the sD dependence of 〈sD

nn|sD〉 ∼ (sD)αD

can be divided into two parts, where the
independence observed for small sD crosses over at sx ≈ 104 to a linear relationship. This linear
region can be understood by studying the proportion of node strength that is contributed by a
single link. It turns out that for very strong links with wD > 104, which make up 4.4% of all links,
the strength of both adjacent nodes is determined almost entirely by the weight of this single link
such that si ≈ wij ≈ sj [23]. This explains the linear trend in strength–strength correlations. The
plot for 〈sN

nn|sN〉 suggests a qualitatively similar picture, where the linear trend naturally sets in
earlier in terms of the absolute value of sN .

The extent of clustering around a node i is quantified by the (unweighted) clustering
coefficient Ci = 2ti/[ki (ki − 1) ], where ti denotes the number of triangles around node i [4].
Empirical networks have been found to have fairly high average clustering coefficients, which
can be seen as manifestation of the presence of three-point correlations. Typically, one looks at
the average clustering coefficient as a function of degree 〈C|k〉, known as the clustering spectrum,
as shown in figure 8. Here 〈C|k〉 ∼ k−1 as is commonly found in many empirical networks [24].
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This seems to indicate that clustering spectrum does not discriminate very well between different
networks, which motivates us to adopt weighted network characteristics in section 3.

We have seen above that vertex degree distribution and vertex strength distribution are very
similar in nature, which can be understood by examining degree-strength correlations. Average
strength conditional on degree in terms of the number of calls 〈sN |k〉 and aggregated call duration
〈sD|k〉 are shown in figure 9. If there were no correlations between vertex degree and the weights
of the links adjacent to the vertex, as can be obtained by shuffling the weights of the links,
we would expect that 〈s|k〉 ∼ kα with α = 1, since 〈si〉 = ki〈w〉, where 〈w〉 is the average link
weight in the network. However, now we have 〈sD|k〉 ∼ kαD

where αD ≈ 0.8 and 〈sN |k〉 ∼ kαN

where αN ≈ 0.9, indicating that vertex strength grows somewhat more slowly than vertex degree,
although αN is close to one, i.e. linear growth. Based on the value of αD, individuals who talk to
a large number of friends appear to spend, on average, slightly less time per friend (lower wD

ij )
than those who spend less time on the phone.

We can study the strength product sisj as a function of degree product kikj, the averages of
which are denoted by 〈sN

i sN
j |kikj〉 and 〈sD

i sD
j |kikj〉, shown on the right in figure 9. In the absence

of correlations, we would expect that 〈sisj|kikj〉 = 〈w〉2〈kikj〉 giving 〈sD
j sD

j |kikj〉 ∼ (kikj)
β with

β = 1. However, we now obtain βD ≈ 0.4 whereas βN ≈ 0.7, corresponding to sublinear
growth. Let us also introduce scaling exponents for degree products such that 〈wN

ij |kikj〉 ∼
(kikj)

γN

and 〈wD
ij |kikj〉 ∼ (kikj)

γD

and for strength products such that 〈wN
ij |sN

i sN
j 〉 ∼ (sN

i sN
j )δN

and 〈wD
ij |sD

i sD
j 〉 ∼ (sD

i sD
j )δD

. The plots of these quantities are shown in figure 10. We find that
γD ≈ −0.2 and γN ≈ −0.1, indicating that the links weights, whether measured in terms of wD

ij

or wN
ij , are practically independent of the degree product kikj. This shows that links weights

are not determined by the absolute number of friends (node degrees) of vi and vj. In contrast,
as we will see in section 4, link weights are dependent on the relative proportion of common
neighbours (link overlap). For the latter exponents we have δN ≈ δD ≈ 0.5, such that wij scales
as the geometric mean of the strengths of the adjacent nodes.
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Figure 10. Scaling of weights wN
ij (◦) and wD

ij (•) as a function degree product
kikj (left) and strength product sisj (right).

Putting these structural properties together, we have seen that the network has a very steep
degree distribution, resulting in few highly connected nodes, and even they are not as connected as
hubs in scale-free networks are. The two weights, number of calls and aggregate call duration, are
strongly correlated, and both yield steep strength distributions for nodes. This can be understood
in light of the only slightly sublinear dependence of strength on degree, governed by the exponent
α. Topologically the network is assortative, but not weight-assortative for a large majority of
nodes. The weight of a given link is almost independent of the product of the degrees of adjacent
nodes as governed by the almost vanishing exponent γ , but depends on the geometric mean of
the strengths of the adjacent nodes as indicated by the value of exponent δ.

3. Advanced network characteristics

Study of purely topological properties of networks, as was done in section 2, is a useful starting
point, but incorporating weights in the analysis is important, as it can enhance our understanding
of the structural properties of the network. This motivates us to proceed to weighted network
characteristics. Here important concepts are subgraph intensity and subgraph coherence that
can be used to study the coupling between network structure and interaction strengths [25].
The intensity of subgraph g with vertices vg and links �g is given by the geometric mean of its
weights as

i(g) =

 ∏

(ij)∈�g

wij




1/|�g|

, (1)

where |�g| is the number of links in �g [25]. Note that the unit of intensity is the same as the
unit of network weights. To characterize the homogeneity of weights in a subgraph, we defined
subgraph coherence q(g) as the ratio of the geometric to the arithmetic mean of the weights as

q(g) = i(g)|�g|/
∑

(ij)∈�g

wij. (2)
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Table 2. Number of cliques of order k = 1, 2, . . . , 10 in the empirical network
(empirical count) and their expectation values in a corresponding ER network
(ER expectation) [28]. Note that k = 1 corresponds to the number of nodes
N = 6 282 226 and k = 2 to the number of links L = 16 828 910, which are the
same in the empirical and random network. These values of N and L give the
link formation probability in the ER graph as p = 2L[N(N − 1)] ≈ 8.5 × 10−7.
The expected number E[X] of subgraphs with k nodes and � links is given
by E[X] = (

N

k

)
(k!/a)p�, where � = k(k − 1)/2 and a = k! is the number of

graphs that are isomorphic to one another, i.e. automorphic, defined as adjacency-
preserving permutation of the vertices of the graph [29]. Here, unlike elsewhere in
the paper, the empirical network is a non-mutual one formed from the aggregated
calls of 12 weeks. Note that subgraphs are counted multiple times, such that one
subgraph of order k contains k subgraphs of order k − 1 and so on. For example,
one subgraph with k = 5 will also be counted as five instances of subgraph of
order k = 4, and 5 × 4 = 20 instances of subgraph of order k = 3. The presence of
high-order topological correlations, as manifest by the existence of cliques beyond
order three (triangles) in the empirical network, makes is starkly different from
an ER graph, in which high-order cliques have astronomically low probability to
be present.

Order Empirical count ER expectation

1 6.3 × 106 6.3 × 106

2 17 × 106 17 × 106

3 5.6 × 106 2.6 × 101

4 1.4 × 106 2.5 × 10−11

5 2.7 × 105 1.7 × 10−29

6 4.5 × 104 7.8 × 10−54

7 6.8 × 103 2.7 × 10−84

8 799 7.0 × 10−121

9 61 1.4 × 10−163

10 2 2.0 × 10−212

Here q(g) ∈ [0, 1] and it is close to unity only if the weights of subgraph g do not differ much,
i.e. are internally coherent [25].

The local structure of unweighted networks can be characterized by the appearance of
small subgraphs, which have been related to the functionality of several networks [26, 27]. This
is done by studying the number of times a subgraph of interest appears in the network, but to
draw statistical conclusions about the appearance frequency of subgraphs, a reference system
needs to be specified, which can be seen as analogous to setting up a null hypothesis H0 in the
statistics literature. The reference system is usually established by rewiring the network while
conserving its degree distribution in order to remove local structural correlations present in the
original network. Statistical significance of motifs is usually measured in terms of a z-score
statistic [27]. Here we have chosen just to provide the number of fully connected subgraphs,
i.e. k-cliques, up-to order k = 10 in table 2 for both the empirical network and a corresponding
Erdős-Rényi (ER) network [28].
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The motif framework has been generalized to weighted networks [25], with the motivation
of studying the nature of coupling between interactions strengths (link weights wij) and local
network topology (an ensemble of subgraphs g). We follow this line of enquiry and find intensity
and coherence for some small fully connected cliques. As a point of comparison, we set up
a weight permuted reference by simply shuffling the weights in the network, which removes
weight correlations while leaving the network topology unaltered. Any deviation in motif
intensities between the empirical and reference system has a straightforward interpretation: the
local organization of weights in the empirical network is not random. While the z-score may
be generalized to weighted networks as demonstrated in [25], it has the same shortcoming
as the z-score has for unweighted networks, namely, that it is based on just one number
characterizing the empirical network and two numbers characterizing the reference distribution.
We follow an alternative approach here introduced in [30], which makes use of the entire intensity
distribution PE(i, g) for a subgraph g in the empirical network to the intensity distribution
PR(i, g) in the corresponding reference ensemble. Now the problem becomes one of comparing
two distributions with one another for which several tools are available, such as the standard
Kolmogorov–Smirnov test or the Kullback–Leibler divergence [31]. This approach suggests a
shift in perspective from regarding subgraphs as discrete objects that either exist or not to a
continuum of subgraph intensities and coherences.

Results are shown for intensity in figure 11 and for coherence in figure 12. Comparing
the subgraph intensity distribution shows that the empirical subgraphs have considerably higher
intensities than their random counterparts. Noting in particular the vertical logarithmic scale,
we see that some high intensity subgraphs can be 10–1000 times more frequent in the empirical
than in the reference ensemble. Especially for the larger subgraphs, e.g. k = 6, there are some
extremely high intensity subgraphs in the empirical network, which are never created randomly
in the reference ensemble. Similarly, the subgraphs in the empirical network are more coherent
than their randomized counterparts. The differences become larger as we move to more complex
subgraphs, the reason being that it is increasingly unlikely to create coherent subgraphs with
many links by chance. Putting the results on intensity and coherence together, link weights
within cliques are higher and more similar in magnitude than expected in a randomized reference.
Consequently, there are important correlations between local network structure at the level of
cliques, or communities, and interactions strengths within them.

Although the intensity-coherence framework is applicable to any arbitrary subgraph g, of
which the k-cliques discussed above are an important class, perhaps one of the most important
subgraphs in social networks are triangles. In the following we use the symbol � in place of
g to emphasize that we are dealing with triangles, but point out that similar analyses could
be carried out for any subgraph g. We denote the average intensity of triangles at node k

by īk(�) = (1/tk)
∑

�k
i(�), where

∑
�k

denotes a sum over all triangles containing node k.
We can average this over all nodes that participate in one instance of a triangle, denoted by
〈ī(�)〉 = (3n(�))−1

∑
k īk(�), where n(�) is the number of triangles in the network and the

factor three comes from the fact that a triangle consists of three nodes7. We emphasize that
īk(�) denotes the mean intensity of triangles around a particular node k, where the mean is
taken over all triangles attached to the node, whereas 〈ī(�)|s〉 denotes average taken over all
nodes whose strength is approximately s. The behaviour of average intensity of triangles as a
function of node strength, 〈ī(�)N |sN〉 and 〈ī(�)D|sD〉, and average mean coherence, 〈q̄(�)N |sN〉
7 In the case of an arbitrary subgraph g, the factor three would be replaced by |vg|, the number of nodes in subgraph g.
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Figure 11. Distribution of subgraph intensity based on aggregate call duration
weights wD

ij for cliques g of order k = 3, 4, 5, 6 in the LCC of the empirical
mutual network (solid blue squares) and in a reference ensemble (open red
squares). Number of subgraphs of intensity i in the empirical network is given by
PE(i, g) and their average number in 100 realizations of the reference ensemble
by PR(i, g). A realization of the ensemble is obtained by shuffling the weights
wD

ij in the empirical network while keeping its topology fixed. All distributions
are unnormalized and both horizontal and vertical scales vary between the panels.

and 〈q̄(�)D|sD〉, are shown in figure 13. We find that 〈ī(�)N |sN〉 ∼ (sN)εN

, where εN ≈ 0.5 and

〈ī(�)D|sD〉 ∼ (sD)ε
D

, where εD ≈ 0.7. The behaviour of average mean coherence 〈q̄(�)D|sD〉 is
markedly different from that of the intensity, achieving a maximum at sD ≈ 103

.
We can use the intensity of triangles to consider the effect of weights on the clustering

properties of the network, and adopt the definition proposed for a weighted clustering coefficient
in [25], leading to

C̃i = 1

ki (ki − 1)

∑
j,k

(
ŵijŵikŵjk

)1/3 = Ciīi(
), (3)

where īk(
) again denotes the average intensity of triangles at node k. The weights are normalized
by the maximum weight in the network, ŵij = wij/max(w), required for reasons of compatibility
with the topological clustering coefficient, and the contribution of each triangle depends on all
of its edge weights [32, 33]. Note that the weighted clustering coefficient can be written as the

New Journal of Physics 9 (2007) 179 (http://www.njp.org/)

http://www.njp.org/


16 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0 0.2 0.4 0.6 0.8 1.0
0

0.5

1.0

1.5

2.0

2.5
x 104

Coherence q(k=3) 

Empirical
Random

0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000

5000

Coherence q (k=4) 

0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

Coherence q (k=5) 

0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

Coherence q (k=6) 

P
E
(q

),
P

R
(q

)

P
E
(q

),
P

R (q
)

P
E
(q

),
P

R (q
)

P
E (q

),
P

R (q
)

Figure 12. Distribution of subgraph coherence based on aggregate call duration
weights wD

ij for cliques of order k = 3, 4, 5, 6 in the LCC of the empirical mutual
network PE(q, g) (solid blue squares) and in the reference ensemble PR(q, g)
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product of the unweighted clustering coefficient and the average intensity of triangles at a node
as shown in equation (3). Thus triangles in which each edge weight equals max(w) contribute
unity to the sum, while a triangle having one link with a negligible weight will have a negligible
contribution to the clustering coefficient. Results are shown in figure 8 next to the unweighted
(topological) clustering coefficient. It is clear that the behaviour for number of calls and aggregate
duration is very similar. For the duration we assume again that a crossover sets in at sD

x ≈ 104.
Up-to this point the power law 〈C̃|sD〉 ∼ (sD)ζD

with ζD ≈ 0.8 gives an acceptable fit. However,
the behaviour of 〈C̃|sN〉 cannot really be described by a power-law.

4. Single link characteristics

Let us now move from subgraphs to study the properties of links and their immediate
neighbourhood. We quantify the topological overlap of the neighbourhood of two connected
nodes i and j by the relative overlap of their common neighbours, defined as

Oij = nij

(ki − 1) + (kj − 1) − nij

, (4)

where nij is the number of neighbours common to both nodes i and j [23]. It is worth pointing out
that this is similar, but not identical, to the edge-clustering coefficient as introduced by Radicchi
et al [34] as

Cij = nij

min(ki, kj) − 1
, (5)

where min(ki, kj) − 1 is the maximum possible number of triangles around the (i, j) edge. Edge-
clustering coefficient reflects the probability that a pair of connected vertices has a common
neighbour, whereas overlap is the fraction of common neighbours a pair of connected vertices
has. The reason for using Oij as opposed to Cij is that the denominator of equation (5) gives
rise to two undesirable features in the context of social networks. Firstly, consider a subgraph in
which vertices i and j are connected only with a single link such that ki = 1 and kj > 1, where
vertex i is a leaf of the network. We now have Oij = 0 indicating that these two individuals
have no common friends, which seems a reasonable conclusion, whereas Cij is either not defined
or diverges as the denominator tends to zero. Secondly, consider a triangle (i, j, k) such that
ki = 2, nij = 1 and kj � 2. If kj = 2, then both Oij = 1 and Cij = 1. However, if kj > 2, we
still have Cij = 1 for all values of kj, whereas Oij = 1/(kj − 1). This is to say that the overlap
of common friends decreases as kj increases since, although i and j still have just one common
friend (nij = 1), the overlap of their common friends decreases as vertex j acquires new friends
(kj increases). This is again a reasonable feature of an overlap measure in a social context. Finally,
as a general remark, since the overlap is a property of the link, it has the desirable property that,
unlike Cij, it is symmetric with respect to its arguments ki and kj.

The behaviour of average overlap as a function of absolute link weight 〈O|wD〉 and
cumulative link weight 〈O|Pc(w)〉 is shown in figure 14.8 Average overlap 〈O|wD〉 increases

8 The cumulative link weight is defined in the following way. Let P<(x) = ∫ x

−∞ p(w)dw, where p(w) is
the probability density function for the link weights (either wN or wD). We define Pc(w) = ψ ∈ [0, 1] if
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Figure 14. Average overlap as a function of absolute link weight 〈O|wD〉 (left)
and cumulative link weight 〈O|Pc(w)〉 (right) for wN (◦) and wD (•).

up to wD ≈ 104, after which it declines strongly. However, 〈O|Pc(w
D)〉 shows that the declining

trend is applicable to only some 5% of links, resulting from these individuals communicating
predominantly just one other person as explored in [23]. Note that sD

x ≈ 104 was the crossover
point in the distribution of 〈sD

nn|sD〉 and 〈C̃|sD〉, indicating that the behaviour of these high-
strength nodes is different from that of the rest. The high strength of these nodes derives from
the top 5% of heavy links that also behave in an anomalous way as discussed in detail in [23].

Could the result concerning overlap Oij versus link weight wij be affected by the fact that
the phone call data is from a single operator and, consequently, calls to phone subscriptions
managed by other operators are not included? Let us assume that an individual in the population
has a probability p = 0.2 of having a subscription governed by the operator the data comes from.
We assume that the nodes are all identical and that the probability of a node being governed by
the operator is independent of the probability of its neighbour being governed by the operator.
Given these assumptions, we can interpret p as the probability of a randomly chosen node
being governed by the operator and, consequently, it being included in our network. Hence,
the probability for a link to be included in the network is p2 and that for a triangle is p3.
These probabilities give rise to expected number of nodes, links, and triangles in the unobserved
population network as N̂ = N/p = 5N, L̂ = L/p2 = 25L, and T̂ = T/p3 = 125T , respectively.
These numbers indicate that the expected number of links and triangles in the underlying network,
to which we have only partial visibility by virtue of having a one-operator sample of it, are 25
times the number of links and 125 times the number of triangles in the observed network,
respectively.

Since the value of p affects the number of observed nodes, links, and triangles in the sample,
it is important to consider how it may affect overlap Oij. To estimate the effect of p on 〈O|wD〉,
we follow an approach motivated by the Bootstrap-technique [35]. We generate a resample of the
LCC of our network by including each node in the resample with probability p and by varying
it obtain different sample sizes. In the limit of setting p = 1 we recover the original network.
The results are shown in figure 15. Although lower values of p result in slightly lower values

P−1
< (ψ − �ψ) < w � P−1

< (ψ + �ψ), where P−1
< (·) is the inverse cumulative density function of link weights

and �ψ = 1/50. Note that Pc(w) is different than P>(w), although we refer to both of them as cumulative link
weight.
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Figure 15. Average link overlap as a function of link weight 〈O|wD, p〉 (left)
and cumulative link weight 〈O|Pc(w

D), p〉 (right) for altogether nine network
samples for the LCC of the mutual network. Three samples were drawn for each
value of p, corresponding to the probability of a node in the initial network to be
included in the sample. We used the values of p = 0.8 (top 3 curves), p = 0.6
(middle 3 curves), and p = 0.4 (bottom 3 curves), and the corresponding sample
sizes were Np = 0.8 ≈ 2.6 × 106, Np = 0.6 ≈ 1.4 × 106, and Np = 0.4 ≈ 0.4 × 106.

of 〈O|wD〉, its qualitative behaviour is fairly insensitive to it. The cumulative plot shows how
decreasing p does, in fact, cause the curve to become slightly flatter. This suggests that if the
original network covered a larger fraction of the market or, alternatively, if data from several
phone operators was aggregated, the value of 〈O|Pc(w

D)〉 would somewhat increase in absolute
terms but, most importantly, its increasing trend with respect to wD would become possibly even
more pronounced. In short, the reported relationship between weight w and overlap O is not an
artifact caused by having a sample from the underlying mobile phone call network.

A well-known hypothesis from sociology, the weak ties hypothesis of Granovetter, states
that the proportional overlap of two individual’s friendship networks varies directly with the
strength of their tie to one another [36]. According to this hypothesis, the strength of a tie is a
‘combination of the amount of time, the emotional intensity, the intimacy (mutual confiding),
and the reciprocal services which characterize the tie’ [36]. The present network is suitable for
testing the weak tie hypothesis empirically at a societal level for two reasons. Firstly, the weights
wD

ij are phone call durations and thus implicate the time commitment to the relationship, one
of the variables suggested to be indicative of the strength of an interpersonal tie. Secondly, the
size of the network guarantees sufficient averaging and, therefore, produces reliable statistics.
In addition, using the mutual network entails at least some degree of reciprocity (at least one
call has been returned) and, importantly, commitment of phone time in this case also implies
monetary costs to the caller. We find that the average overlap increases for about 95% of link
weights, as shown in figure 14, and the behaviour of the remaining 5% can be accounted for (see
supplementary information in [23]). Importantly, this increasing trend is practically unaffected
whether number of calls wN or aggregate call duration wD are used as weights. Put together with
the issue of sampling discussed above, these results provide a societal level verification of the
weak ties hypothesis [23].

The results on overlap can be related to the concept of link betweenness centrality, defined
for a link e = (i, j) as bij = ∑

v∈Vs

∑
w∈V/{v} σvw(e)/σvw, where σvw(e) is the number of shortest
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Figure 16. Cumulative distribution of link betweenness centrality P>(b) (left)
in the LCC of the mutual network and the average link overlap as a function of
link betweenness centrality 〈O|b〉 (right). Here P>(b) has been computed using
a sample of Ns = 105 starting nodes from which the shortest paths to every other
N − 1 nodes were found in order to calculate the betweenness centrality of links.

paths between v and w that contain e, and σvw is the total number of shortest paths between v

and w [37]. In practice, we use the algorithm introduced in [38] to compute bij but, due to the
heavy computational requirements of the algorithm, instead of using all the nodes of the set V

making up the network, we use a sub-set of Ns = 105 nodes in the sample Vs as starting points.
We then use the algorithm to find the shortest paths from these Ns nodes to all other remaining
N − 1 nodes, every time keeping track of which links are used in constructing the shortest paths.
Note that using this many source nodes results of the order of 1011 shortest paths to be computed
in the network, more than a sufficient number, as was confirmed by using a smaller value for
Ns. The cumulative distribution of link betweenness centrality is shown in figure 16. The figure
also shows the behaviour of average link overlap as a function of link betweenness centrality
〈O|b〉. This is in full agreement with the above picture of the role of weak and strong links: weak
links have low overlap but high betweenness centrality, reflecting their importance in holding
the system together, while strong links have high overlap but low betweenness centrality and, as
such, unlike the weak links, are not irreplaceable.

We give a summary of the studied basic, advanced, and single link network characteristics
in table 3.

5. Percolation studies

We now turn to an examination of the implications of link removal on the global properties of
networks, which has many precedents in the complex network literature [16, 37], [39]–[45].
However, instead of removing links randomly, we remove them based on either their weight
wij, overlap Oij, or betweenness centrality bij values. Removal can be carried out in one of
two directions, i.e. either starting from links with low wij, Oij, or bij values and proceeding
towards higher ones or, alternatively, starting from links with high wij, Oij, or bij and proceeding
towards those with lower corresponding values. This thresholding process is governed by the
control parameter f , the ratio of removed links, which allows us to interpolate between the initial
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Table 3. Summary of basic, advanced, and single link characteristics used to
study the LCC of the mutual network. The column titled ‘scaling’ gives, when
appropriate, the approximate values obtained for the exponents found by fitting
the the data to the given functional relation. The last column refers to the page
where the characteristic is addressed.

Network characteristic Notation ‘Scaling’ See page

Degree distribution (cumulative) P>(k) NA 6
Link weight distribution (cumulative) P>(wN), P>(wD) NA 7,8
Node strength distribution (cumulative) P>(sN), P>(sD) NA 7,8
Degree–degree correlation 〈knn|k〉 ∼ kα, α ≈ 0.4 8,9
Degree–degree correlation, wN

ij –weighted 〈kN
nn|k〉 9

Degree–degree correlation, wD
ij -weighted 〈kD

nn|k〉 9
Strength–strength correlation 〈sN

nn|sN〉 ∼ (sN)α
N

, see text 10
〈sD

nn|sD〉 ∼ (sD)α
D

, see text 10
Clustering spectrum 〈C|k〉 ∼ k−1 10
Weight–degree correlation 〈sN |k〉 ∼ kαN

, αN ≈ 0.9 10,11
〈sD|k〉 ∼ kαD

, αD ≈ 0.8 10,11
Strength product–degree product correlation 〈sN

j sN
j |kikj〉 ∼ (kikj)

βN

, βN ≈ 0.7 11
〈sD

j sD
j |kikj〉 ∼ (kikj)

βD

, βD ≈ 0.4 11
Weight–degree product correlation 〈wN

ij |kikj〉 ∼ (kikj)
γN

, γD ≈ −0.2 11,12
〈wD

ij |kikj〉 ∼ (kikj)
γD

, γN ≈ −0.1 11,12
Weight–strength product correlation 〈wN

ij |sN
i sN

j 〉 ∼ (sN
i sN

j )δ
N

, δN ≈ 0.5 11,12
〈wD

ij |sD
i sD

j 〉 ∼ (sD
i sD

j )δ
D

, δD ≈ 0.5 11,12
Average triangle intensity–strength correlation 〈ī(�)N |sN〉 ∼ (sN)ε

N

, εN ≈ 0.5 15,16
〈ī(�)D|sD〉 ∼ (sD)ε

D

, εD ≈ 0.7 15,16
Average triangle coherence–strength correlation 〈q̄(�)N |sN〉 NA 15,16

〈q̄(�)D|sD〉 NA 15,16
Weighted clustering–strength correlation 〈C̃|sD〉 ∼ (sD)ζ

D

, ζD ≈ 0.8 10,16
〈C̃|sN〉 NA 10,16

Overlap–weight correlation 〈O|wN〉 NA 16–18
〈O|wD〉 NA 16–18

Overlap–cumulative weight correlation 〈O|Pc(w
N)〉 NA 16–18

〈O|Pc(w
D)〉 NA 16–18

Overlap–betweenness centrality correlation 〈O|b〉 NA 19,20

connected network (f = 0) and a set of isolated nodes (f = 1). We study the response of the
network to removal of wij, Oij, and bij links by monitoring four quantities as a function of the
control parameter, which are (1) order parameter RLCC, the fraction of nodes in the LCC, (2)
‘susceptibility’ S̃ = ∑

s s2ns/N, where ns is the number of clusters of size s, (3) average shortest
path length 〈�〉, and (4) average clustering coefficient 〈C〉. Differences in the behaviour of these
quantities reflect the global role different links have in the network.

The order parameter RLCC is defined as the fraction of nodes in the LCC, i.e. the fraction
of nodes that can all reach each other through connected paths. We find that removing links
from low wij to high wij (red curve), from low Oij to high Oij (red curve), or from high bij to
low bij (black curve) leads to a sudden disintegration of the network at fw = 0.8, fO = 0.6,
and f b = 0.6, respectively. In contrast, removing first the high weight, high overlap, or low
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betweenness centrality links will shrink the network, but will not precipitously break it apart. This
suggests that weak and strong links, low and high overlap links, and low and high betweenness
centrality links have all different global structural roles in the network. In particular, it appears
that removing low overlap links produces a qualitatively similar response to removing high
betweenness centrality links.

The second row shows the behaviour of S̃ = ∑
s s2ns/N, which is analogous to magnetic

susceptibility in thermal phase transitions, corresponding to the average component size in the
network with the LCC excluded from the summation. According to percolation theory, if the
network collapses via a phase transition at fc, then S̃ diverges as f → fc for an infinite system.
A finite signature of such divergence is clearly visible in these plots upon removing low wij, low
Oij, or high bij links, suggesting that the network disintegrates at this point following a phase
transition. Since the role of weak and strong ties is different at the local level and has important
consequences from the sociological perspective [36], understanding their different global role is
central, which is indeed a very pertinent question from the perspective of social network theory
(see section 1). We have studied the global role of weak and strong links using finite size scaling
(FSS) as reported in [23]. Although different FSS methods yielded slightly different results,
removal of weak links (red curve) lead to a genuine phase transition at fw

c (∞) = 0.80, but there
appears to be no phase transition when strong links are removed first (black curve). This result
confirms that weak and strong links have qualitatively different global roles in social networks.

While the size of the largest component tells us about overall connectivity of the network,
it does not convey information about its topology, only that the NLCC(f = 0)RLCC(f) nodes are
connected through one or more paths. One way to characterize the topology of the network is to
study the average shortest path length, denoted by 〈�〉, which is the average number of links on
the shortest path connecting any two vertices within the LCC. Note that as links are removed,
the network becomes fragmented in components, of which we focus only on the largest one, i.e.
the LCC for the given value of the control parameter f . Path lengths are also important from
the perspective of network function and efficiency. The existence of a path between nodes is a
necessary but not sufficient condition for there to be a flow of information between them. This is
especially true if the transmission through links is leaky, i.e. it is possible for information to get
lost along the way. Focusing on the role of weak and strong ties, we find that removal of weak
ties increases path lengths more than removal of strong ties does, although the effect is stronger
upon removing low Oij or high bij links.

Path lengths are also related to the conjecture obtained from the weak ties hypothesis,
according to which communities are locally connected by single weak ties, and removing these
weak ties should therefore increase average path lengths making it more difficult to reach
people [36]. Our result provides an empirical verification of the weak ties conjecture. It can
also be related to a study dealing with search in social networks, according to which successful
searches are conducted primarily through intermediate to weak strength ties without requiring
highly connected hubs to succeed [8]. The present results suggest that the success of weak ties
for search might lie in their function as community connectors, enabling one to reach outside of
one’s own community and thus expanding the set of individuals who may be reached through
the network.

The average clustering coefficient 〈C〉 measures the local cliquishness of the network.
Unlike the average shortest path length 〈�〉, which is computed only for the LCC for the given
value of f , the average clustering coefficient is computed over all nodes in the network for
which degree k > 1. Removing strong links (figure 17, row (g), black curve) leads to a convex
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Figure 17. Percolation analysis. Panel (a) shows a small network sample with
all links intact, (b) the same sample with 80% of the low wij links removed
(f = 0.80 , red curve), and (c) the sample with 80% of high wij links removed
(f = 0.80, black curve). Rows (d)–(g): removal of high or low weight wij links
(left column), overlap Oij links (middle column), or betweenness centrality bij

links (right column). The links are removed one at a time based on their ranking,
such that the black curves correspond to starting removal from high wij, Oij, and
bij links, whereas the red curves represent the opposite, starting removal from
low wij, Oij, and bij links. The fraction of removed links is denoted by f . Row
(d): the order parameter RLCC, the fraction of nodes of nodes present in the LCC
of the network for the given value of f to that present in the LCC for f = 0.
Row (e): S̃ = ∑

s s2ns/N, corresponding to the average component size in the
network with the LCC excluded from the summation. Row (f): average shortest
path length 〈�〉 in the LCC of the system for the given value of f , which is also
expected to diverge as f → fc. Row (g): average clustering coefficient 〈C〉 in the
network.

clustering curve with an overall lower 〈C〉 than when weak links are removed. This happens
because the strong links are mostly located in tightly connected communities where triangles are
abundant. Consequently, removing them decreases the number of triangles and lowers clustering.
Removing weak links (red curve) produces a concave clustering curve which first decreases very
slowly. This is because the weak links are mostly located between communities, acting as local
bridges and, therefore, rarely participate in triangles. Consequently, removing them has little
effect on clustering. However, the difference in behaviour for overlap thresholding is even more
drastic. On removing high Oij links, the communities become shattered very quickly, so that
at f ≈ 0.40 average clustering coefficient is close to zero. The opposite happens on removing
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low Oij links. The average clustering increases up-to f ≈ 0.54, compatibly with the fact that
53.5% of links in the LCC have Oij = 0, and reaches a value almost as high as 〈C〉 ≈ 0.80.
This results demonstrates quantitatively that the network is highly clustered and these clusters,
or communities, can be filtered out reasonably well by removing low Oij links. Again, removal
of high overlap links is qualitatively similar to removing low betweenness centrality links and
vice versa.

Since some community detection algorithms rely on the concept of betweenness centrality to
detect communities [46], our results suggest that it may be possible to use the concept of overlap
to detect communities at least in social networks. Bearing in mind that Oij is a local characteristic
and can be computed in O(N), whereas bij is a global characteristic and takes O(N2 ln N) to
compute, algorithms relying on bij could use 1/Oij as a local proxy for bij, potentially leading
to significant gains in computing performance. We note that a modified version of the edge-
clustering coefficient of equation (5) has also been used to replace edge betweenness centrality
in a popular method for finding communities [34]. One could alternatively use Oij without any
modifications and, due to its desirable properties covered in section 4, it may be better suited for
that purpose in identifying communities in social networks.

6. Discussion

Modern technologies enable the study of social networks of unprecedented size. A number
of such investigations have appeared recently ranging from exploring email communication
networks [6]–[8], [47] to identifying groups and strategies in an electronic marketplace
[48]–[50]. In this paper, we constructed a network from mobile phone call records and used
both aggregated call durations and the cumulative number of calls as a measure of the strength
of a social tie. Since the network is derived exclusively from one-to-one communication, it can
be used as a proxy for the underlying human communication network at the societal level which,
to our knowledge, is the largest weighted social network studied as far.

In prototypical sociological studies the number of investigated individuals is limited to the
order of a hundred [51], although exceptionally, like in the case of the Add Health database [52]
as employed, for example, in [53], tens of thousands of individuals may be reached using
questionnaires. This method enables a broad spectrum of interpersonal relations to be covered,
although the subjectivity and quantification of interaction strengths are major problems. In this
paper we have followed a complementary approach by basing the network on a specific type
of social interaction, a phone call, allowing an objective measure of interactions for millions of
people. We believe that studies like this one can provide valuable lessons about the large-scale
structure of societies emerging from microscopic social interactions.

One of our focal points was to explore the relationship between local network topology and
the associated weights. This is particularly important from the point of view of sociology, where
such a relation was hypothesized a long time ago. In order to test the weak ties hypothesis, we
used the concept of link overlap to measure the coupling between link weight and the overlap
of the neighbourhood in the vicinity of the tie. We demonstrated that for 95% of the links the
overlap and tie strength are correlated, verifying the hypothesis at a societal level. Moreover, we
found the link overlap to be negative correlated with its betweenness centrality, suggesting that
the former can be used as a local proxy for the latter, computationally heavy, global quantity.

New Journal of Physics 9 (2007) 179 (http://www.njp.org/)

http://www.njp.org/


25 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

We explored further the role of weights in the network using the concepts of intensity,
coherence, and weighted clustering coefficient. We found correlations between local network
structure at the level of cliques, or communities, and interaction strengths within them.
The weighted clustering coefficient provides an appropriate tool for probing the strength of
clustering due to weights, and may be used to differentiate between weighted networks that
have fundamentally different coupling between network topology and interaction strengths. We
found that the network is assortative in terms of topology as expected but, rather surprisingly,
is not weight-assortative for a large majority of nodes. Further, the coupling between local
network structure and interaction strengths carries over to the global level. We quantified this by
studying the differences in percolation behaviour depending on the properties of the removed
links. Following this approach we also verified the so-called weak ties conjecture, a global
manifestation of the weak ties hypothesis.

The obtained results can be used as a basis for devising weighted models of social networks.
In particular, the relation between topological and statistical properties should be incorporated
in such models. This enables collective social phenomena to be studied, such as spreading of
information and opinion formation, at a level of realism and scale not possible in the past. The
lessons learnt from this endeavour are not limited to understanding human societies, but may
find application in other domains as well. Finally, we believe that our systematic approach can
be adopted to study other weighted networks, and the present results can be seen as a reference
against which other networks may be compared.
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[23] Onnela J-P, Saramäki J, Hyvönen J, Szabó G, Lazer D, Kaski K, Kertész J and Barabási A-L 2007 Structure

and tie strengths in mobile communication networks Proc. Natl Acad. Sci. USA 104 7332–6
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